2014銀川一中二模理科數(shù)學答案

學習頻道    來源: 陽光學習網(wǎng)      2024-07-20         

本站非官方網(wǎng)站,信息完全免費,僅供參考,不收取任何費用,請以官網(wǎng)公布為準!
2014銀川一中二模理科數(shù)學答案

絕密★啟用前
2014年普通高等學校招生全國統(tǒng)一考試
理  科  數(shù)  學
(第二次模擬考試)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,其中第Ⅱ卷第22~24題為選考題,其它題為必考題?忌鞔饡r,將答案答在答題卡上,在本試卷上答題無效。考試結束后,將本試卷和答題卡一并交回。
注意事項:
1.答題前,考生務必先將自己的姓名、準考證號填寫在答題卡上,認真核對條形碼上的姓名、準考證號,并將條形碼粘貼在答題卡的指定位置上。
2.選擇題答案使用2B鉛筆填涂,如需改動,用橡皮擦干凈后,再選涂其他答案的標號;非選擇題答案使用0.5毫米的黑色中性(簽字)筆或碳素筆書寫,字體工整、筆跡清楚。
3.請按照題號在各題的答題區(qū)域(黑色線框)內作答,超出答題區(qū)域書寫的答案無效。
4.保持卡面清潔,不折疊,不破損。
5.做選考題時,考生按照題目要求作答,并用2B鉛筆在答題卡上把所選題目對應的題號涂黑。
第I卷
一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的. 
1.已知全集U=R,集合,,則集合等于 
A.        B.   C.      D.
2.若復數(shù)滿足,則=  
A.  B.    C.    D.
3.已知等比數(shù)列的公比大于1,,,則 
A.96   B.64  C.72    D.48
4.設l,m,n表示不同的直線,α、β、γ表示不同的平面,給出下列四個命題:
①若m∥l,且m⊥α,則l⊥α; ②若m∥l,且m∥α,則l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且nβ,則l∥m.
其中正確命題的個數(shù)是 
A.2        B.1        C.3        D.4
5從拋物線上一點P引拋物線準線的垂線,
垂足為M,且|PM|=5,設拋物線的焦點為F,
則△MPF的面積(    )
A.5B.10C.20D.
6閱讀如圖所示的程序框圖,若輸入,則輸出的值是    
A.     B.      C.      D. 
7.將甲、乙、丙等六人分配到高中三個年級,每個年級2人,要求甲必須在高一年級,乙和丙均不能在高三年級,則不同的安排種數(shù)為 
A.18      B.15        C.12       D.9
8.某幾何體的三視圖如圖所示,則該幾何體的表面積為
A.            B.
C.(2)D.(2) 
9.△ABC中,角A、B、C所對的邊分別為a、b、c,若<cos A,則△ABC為
A.鈍角三角形    B.直角三角形     C.銳角三角形   D.等邊三角形
10.現(xiàn)有四個函數(shù):①;②;③;④的圖象(部分)如下:
則按照從左到右圖象對應的函數(shù)序號安排正確的一組是
A.①④②③ B.①④③②   C.④①②③   D.③④②①
11過雙曲線的右頂點A作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為B, C.若,則雙曲線的離心率是 
A.      B.       C.       D.
12設函數(shù)在(-∞,+∞)內有定義,對于給定的正數(shù),定義函數(shù):,取函數(shù),若對任意的,恒有,則
A. k的最大值為2 B. k的最小值為2     
C. k的最大值為1 D. k的最小值為1
本卷包括必考題和選考題兩部分.第13題~第21題為必考題,每個試題考生都必須做答.第22題~第24題為選考題,考生根據(jù)要求做答.
二、填空題:本大題共4小題,每小題5分. 
13.已知向量,,且,若變量x,y滿足約束條件則z的最大值為         
14的二項展開式中含的項的系數(shù)為             
15若,且,則的值為        . 
16在平面直角坐標系中,記拋物線與x軸所圍成的平面區(qū)域為,該拋物線與直線y=(k>0)所圍成的平面區(qū)域為,向區(qū)域內隨機拋擲一點,若點落在區(qū)域內的概率為,則k的值為           
17.(本小題滿分12分)
設數(shù)列的各項均為正數(shù),它的前項的和為,點在函數(shù)的圖像上;數(shù)列滿足.其中.
(Ⅰ)求數(shù)列和的通項公式; 
(Ⅱ)設,求證:數(shù)列的前項的和(). 
18 (本題滿分12分)
今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力。為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]頻數(shù)510151055贊成人數(shù)469634
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查
者中各隨機選取兩人進行進行追蹤調查,記選中的
4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ
的分布列和數(shù)學期望.
19.(本小題12分)
已知正方形ABCD的邊長為1,.將正方形ABCD沿對角線折起,使,得到三棱錐A—BCD,如圖所示.
(I)若點M是棱AB的中點,求證:OM∥平面ACD;
(II)求證:;
(III)求二面角的余弦值.
20.(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點.
(Ⅰ)若P是第一象限內該圖上的一點,,求點P的作標;
(Ⅱ)設過定點M(0,2)的直線l與橢圓交于同的兩點A、B,且∠AOB為銳角(其中O為作標原點),求直線的斜率的取值范圍.
21.(本小題滿分12分)
設函數(shù).
(Ⅰ)當時,求曲線在處的切線方程;
(Ⅱ)討論函數(shù)的單調性;
(Ⅲ)當時,設函數(shù),若對于,,使成立,求實數(shù)的取值范圍. 
22.(本小題滿分10分)選修4—1: 幾何證明選講.
如圖,在正ΔABC中,點D、E分別在邊BC,  AC上,且,,AD,BE相交于點P.
求證:(I) 四點P、D、C、E共 圓;      
 (II) AP CP。
已知直線為參數(shù)), 曲線  (為參數(shù)).
 (I)設與相交于兩點,求;
(II)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最小值.
已知函數(shù).
(I)若不等式的解集為,求實數(shù)a的值;
(II)在(I)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
題號123456789101112答案DCAABCDBAACD13. 3   14. 15   15. 1或
17.⑴由已知條件得,   ①
當時,,  ②
①-②得:,即,
∵數(shù)列的各項均為正數(shù),∴(),
又,∴;∵,
∴,∴;
⑵∵,
∴,
,
兩式相減得,
∴.
()的所有可能取值為:0,1,2,3……………6分
所以的分布列是:
所以的數(shù)學期望
19. (I) 在正方形ABCD中,是對角線的交點,
O為BD的中點,  M為AB的中點, OM∥AD. 
又AD平面ACD,OM平面ACD, OM∥平面ACD.  
(II)證明:在中,,, 
,. 
又 是正方形ABCD的對角線,, 
又. 
(III)由(II)知,則OC,OA,OD兩兩互相垂直,如圖,以O為原點,建立空間直角坐標系.則,                
是平面的一個法向量.,,                       
設平面的法向量,則,.
即,  
所以且令則,,解得. 
從而,二面角的余弦值為. 
20.(Ⅰ)易知,,.
∴,.設.則
,又,
聯(lián)立,解得,.
(Ⅱ)顯然不滿足題設條件.可設的方程為,設,.
聯(lián)立
∴,由
,,得.①又為銳角,∴
∴.②
綜①②可知,∴的取值范圍是
21.   函數(shù)的定義域為,            
(Ⅰ)當時,,
 ∴在處的切線方程為                             
(Ⅱ),的定義域為
當時,,的增區(qū)間為,減區(qū)間為
  當時,
  ,的增區(qū)間為,減區(qū)間為,
   , 在 上單調遞減
  ,
        時,
(Ⅲ)當時,由(Ⅱ)知函數(shù)在區(qū)間上為增函數(shù),
所以函數(shù)在上的最小值為
若使成立在上的最小值不大于
在[1,2]上的最小值(*)                                        
①當時,在上為增函數(shù),
與(*)矛盾
②當時,,
由及得,                          
③當時,在上為減函數(shù),
, 此時
綜上所述,的取值范圍是                                    
22.證明:()在中,由知:
所以四點共圓;
(II)如圖,連結.
在中,,,
由正弦定理知
由四點共圓知,,
所以
23.解.(I)的普通方程為的普通方程為
聯(lián)立方程組解得與的交點為,,
則. 
   (II)的參數(shù)方程為為參數(shù)).故點的坐標是,從而點到直線的距離是
      ,
由此當時,取得最小值,且最小值為.
解:()由得,,即,
,。分
()由()知令,
則,
的最小值為4,故實數(shù)的取值范圍是。10分
數(shù)學學習  http://e-deep.com.cn/math/
陽光考試網(wǎng)    考試資訊分享    m.yggk.net             [責任編輯:yggk]
陽光考試網(wǎng)手機版 |   學習頻道 |   學習專欄 |   大學排行榜 |   高考查分系統(tǒng) |   高考志愿填報 |   專題列表 |   教務管理系統(tǒng) |   高考錄取查詢

  陽光文庫   免費學習門戶 備案號:閩ICP備11025842號-3 網(wǎng)站地圖

本站所有資料完全免費,不收取任何費用,僅供學習和研究使用,版權和著作權歸原作者所有

Copyright 2025 陽光學習網(wǎng), All Rights Reserved.